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Summary. Three-dimensional gene expression PointCloud data generated by the
Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitat ive
information about the spatial and temporal expression of ge nes in early Drosophila
embryos at cellular resolution. The BDTNP team visualizes a nd analyzes Point-
Cloud data using the software application PointCloudXplor e (PCX). To maximize
the impact of novel, complex data sets, such as PointClouds, the data needs to
be accessible to biologists and comprehensible to developers of analysis functions.
We address this challenge by linking PCX and Matlab R 6 via a dedicated interface,
thereby providing biologists seamless access to advanced data analysis functions and
giving bioinformatics researchers the opportunity to inte grate their analysis directly
into the visualization application. To demonstrate the use fulness of this approach,
we computationally model parts of the expression pattern of the gene even skipped
using a genetic algorithm implemented in Matlab and integra ted into PCX via our
Matlab interface.

Key words: three-dimensional gene expression, integrating visualization and data
analysis, Matlab integration, network modeling, genetic a lgorithm

6MATLAB is a registered trademark of The MathWorks Inc., 3 App le Hill Drive
Natick, MA 01760-2098, USA. Online at: http://www.mathworks.com/
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1 Introduction

The BDTNP has developed a novel type of spatial and temporal gene expres-
sion data called PointCloud. Single PointClouds are obtained via segmenta-
tion of two-photon microscopy images ofDrosophila embryos and provide a
quantitative representation of spatial gene expression levels of the Drosophila
blastoderm at cellular resolution [19]. Multiple PointClo uds representing a
variety of genes at multiple developmental time intervals are registered into a
single Atlas PointCloud describing the expression of many genes at multiple
points in time [7].

PointCloudXplore (PCX) is the standard tool of the BDTNP for visualiza-
tion and analysis of PointCloud data [28]. PCX supports various 2D and 3D
physical embryo views and abstract data visualizations andprovides a suite of
analysis tools, e.g., methods for cell selection and clustering [20]. Matlab |a
commercial, high-level programming language and analysisenvironment| is
widely used throughout the BDTNP, e.g., for PointCloud creation and embryo
registration, and provides with its rich feature-set an ideal platform for devel-
opment of custom analysis functionality. Despite its versatility, we anticipate
that increasing numbers of researchers will bene�t from being able to quickly
develop and integrate custom analysis capabilities with PCX.

To address this challenge we developed an interface betweenPCX and
Matlab, enabling researchers to easily integrate their analysis with the visual-
ization and providing biologists faster and more convenient access to advanced
analysis functions (Section 3). Via the PCX-Matlab interface, one can call
functions implemented in Matlab directly from PCX, while PC X automati-
cally handles all necessary communication, including, start/close of Matlab,
data transfer to and from Matlab, and initiation of function calls. No Matlab
knowledge is required to access Matlab functions via PCX. The interface also
hides PCX's internal architecture from the Matlab developer, and very low
e�ort is needed to make a Matlab function accessible to PCX. The interface
supports fast prototyping and testing of new ideas and facilitates communi-
cation between bioinformatics researchers and experimental biologists.

We chose computational modeling of genetic regulatory networks as ex-
ample to demonstrate the usefulness of the PCX-Matlab interface (Section 4).
Expression regulatory models |e.g., by Janssens et al. [15]and Sanchez et
al. [26]| often depend on extensive system-wide knowledge based on years
of experimental work on mutants and transgenic constructs and specialized
sets of equations and programs. With increasing number of components (i.e.,
genes), the number of potential interactions that need to beanalyzed experi-
mentally increases exponentially. Thus, computational methods are needed to
identify probable candidate genes for experimental veri�cation.

We describe a genetic algorithm for �nding potential genetic regulatory
interactions via optimization of a linear network model. We implemented this
algorithm in Matlab and integrated it into PCX via our system interface. By
integrating the modeling with the visualization, we can de� ne the necessary
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input to the analysis quicker and more accurately, and are able to e�ectively
validate the input and output of the analysis. We discuss themodeling of the
expression pattern of the geneeven skipped(eve) to illustrate the advantages
and disadvantages of the employed modeling approach.

2 Related Work

PCX uses the established concept oflinked multiple views [2] for visualiza-
tion of high-dimensional 3D gene expression data. In the WEAVE system, a
combination of physical and information visualization views is used for explo-
ration of cardiac simulation and measurement data [9]. Henze [12] developed
a multiple-view-based system for exploration of time-varying computational
uid dynamics data. Advanced queries are supported by this system via selec-
tion of data subsets in each view (here termed portraits). The concept of using
abstract views to de�ne data queries was formalized by Doleisch et al. [6]. In-
terfaces to programming and analysis languages and systemsare often used
in the context of visualization to support scripting and to ease integration of
the visualization with simulation [16] or data analysis, e.g., R and GGobi [18].

Someren et al. [27], De Jong [4], and D'haeseleer et al. [5] provide an
overview of genetic network modeling. Janssens et al. [15] used simulated
annealing to describe a predictive model of transcriptional control of the
geneeven skipped(eve) based on spatial gene expression, regulatory sequence
data, and FlyEx 2D cellular resolution quantitative protei n expression data
of Drosophila embryos, which has also been used for modeling ofDrosophila
anterior-posterior gap gene system [14]. Fowlkes et al. [7]described �rst re-
sults on expression modeling based on the BDTNP quantitative 3D expression
atlas using linear regression to identify for each target pattern six likeliest can-
didate regulators. In this work we describe the implementation of a genetic
algorithm for �nding genetic network models based on the BDTNP expression
atlas. Genetic algorithms were surveyed by Whitley et al. [29] and Davis et
al. [3]. The goal of this paper is not to develop a more sophisticated regulatory
model but to provide a exible environment to ease development of advanced
analysis functions and to make them more accessible to the user.

3 The PointCloudXplore and Matlab Interface

The main goal of our research is to provide fast and easy access to new anal-
ysis functions for three-dimensional gene expression data, thus facilitating
communication between biologists and bioinformatics researchers. To accom-
plish this goal, we added a Matlab interface (Figure 1) to PointCloudXplore
(PCX), making PCX more easily extensible by bioinformatics researchers.
From a biologist's perspective, this interface is transparent with respect to
which functionality is implemented via Matlab functions. N o Matlab knowl-
edge is necessary to use these functions. From a bioinformatics researcher's
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Fig. 1. Overview of PointCloudXplore and the interface to Matlab.

perspective, the interface hides the internal PCX architecture and requires
minimal e�ort to make a Matlab function accessible to PCX.

The PCX-Matlab interface provides means to initiate Matlab function
calls from PCX's graphical user interface (GUI), while automatically handling
all necessary inter-system communication. Data classes exported from PCX
to Matlab include multiple user-de�ned lists of gene expressions and/or cell
selections and their names, 2D/3D cell locations, cell neighbors, and additional
user-de�nable function parameters (scalar double, Boolean, integer, or string).
Information imported from Matlab to PCX includes multiple d erived gene
expression channels and/or cell selections including optional names.

In the following we describe the PCX-Matlab interface (Section 3.1), dis-
cuss the interface from a biologist's and bioinformatics researcher's view (Sec-
tion 3.2), and review various example applications (Section 3.3).

3.1 Interface Design

The de�nition of a Matlab function for PCX consists of an M -�le with the
function implementation and a PCXM header �le, describing the function for
PCX (Figure 3). This header �le must specify:

� a function category (TYPE) used to group functions in the menu,
� a name for the function (NAME) to appear in the menu,
� the location of the M -�le, if di�erent from the PCXM �le (DIR), and
� the Matlab command to invoke the function (CALL).

The TYPE and NAME parameter may de�ne an arbitrary string, al lowing
the user to group and name functions according to personal preferences.

Using strict name conventions for function call input and output parame-
ters, PCX can automatically identify what data needs be transferred to and
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Fig. 2. Design of the interface between PointCloudXplore and Matla b.

from Matlab | e.g., gene expressions, cell locations and neighbors, cell se-
lections, and user-de�nable double, integer, Boolean, or string parameters|
based on the function call itself. All data transfers are implemented via a se-
ries of function calls to the Matlab C++ API, allowing us to di rectly transfer
vector/matrix data of varying type between the two systems.

For some applications it makes sense to pass input genes and names in
multiple groups. For each list of genes or cell selections, one may optionally
specify the expected size of each list (INGENES, IN BRUSHES). Further-
more, one can de�ne an optional URL for a HTML help page (HELP URL).
Thus, a PCXM header �le provides PCX with information about: i) what data
needs to be exchanged between Matlab and PCX, ii) what parameters need
to be exposed to the user, iii) how the Matlab function is invoked, and iv)
how the function and its parameters should be represented within the GUI.

The PCX-Matlab interface consists of three main components: a commu-
nication layer (blue), a function management layer (green), and the GUI (tan)
(see Figure 2). The communication layer is based on Matlab'sC++ API (gray)
and provides higher-level functions for inter-system communication.

The function management layer manages all Matlab functionsavailable to
PCX. The Manager class parses the PCXM �les, stores and provides access to
information about the Matlab functions, and initiates the e xecution of Matlab
functions. For each Matlab function, the Manager creates aCommandData
object containing all information about the corresponding function.

The GUI portion of PCX' Matlab interface consists of: the Matlab Menu,
a parameterInput Dialog , and the Help Window. The Matlab Menu is part of
PCX' main menu bar and lists all available Matlab functions ( NAME) grouped
by their logical category (TYPE). Furthermore, the Matlab M enu provides
access to the Help Window and various management options, such as updating
the function list. Using the Help Window, one can conveniently access the
HTML help pages of all Matlab functions. When selecting a Matlab function
in the Matlab Menu, PCX dynamically creates an Input Dialog at runtime
listing all user-de�nable input parameters of the corresponding function.

The basic work ow of a use-case involving both PCX and Matlab is
as follows (Figure 1): Upon start-up PCX parses all available PCXM �les
and initializes the Matlab Menu and Help Window. To initiate the execution
of a Matlab function, one selects the desired function in theMatlab Menu.
Subsequently, PCX creates an Input Dialog for the function and starts Matlab
if it is not already running. After one has speci�ed and con�r med the function
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input in the Input Dialog, PCX transfers all the necessary data to Matlab and
invokes the Matlab function. Finally, PCX imports any outpu t expression
channels or cell selections, once the Matlab function has terminated.

3.2 Perspective of the Biologist and Bioinformatics Resear cher

When calling a Matlab function via PCX, the user interacts only directly with
PCX. PCX automatically handles all communication with Matl ab. In terms
of access to the function it is irrelevant from a biologist'sperspective whether
a function is implemented in Matlab or directly in PCX. Howev er, unlike Mat-
lab, the interface of PCX is much more user-friendly and doesnot require any
command-line input. To simplify repeated analysis and test-runs, PCX sup-
ports saving and restoring gene input lists, and the integration of Matlab and
PCX enables one to re�ne input parameters quickly between individual Mat-
lab command executions by making it possible to quickly investigate input and
output expression patterns. The interface between Matlab and PCX provides
the user faster and more convenient access to advanced analysis functions.

From a bioinformatics researcher's perspective, the e�ortneeded to make
an existing Matlab function (de�ned in an M �le) accessible i n PCX is very
low and limited to creating a simple PCXM header �le. No recompilation of
source code or knowledge of PCX design or implementation details is required.
Matlab functions can be updated at runtime of PCX, making development and
debugging more convenient and less time-consuming. In addition, PCX pro-
vides a convenient GUI for the Matlab functions and parses PointCloud data,
i.e., a developer does not need to know how to read PointClouddata. PCX's
advanced data display and selection mechanisms in combination with the sim-
plicity of the Matlab interface simplify the development of usable scripts for
processing PointCloud data. The PCX-Matlab interface provides an easy way
to make new analysis functions quickly available to biologists. The interface
supports fast prototyping and testing of new ideas and facilitates communi-
cation between bioinformatics researchers and experimental biologists.

Figure 3 shows a simple example function that computes the cell-by-cell
di�erence between two expression patterns, illustrating the e�ort required
for deploying a Matlab function in PCX. The function takes tw o genes and
their names as input and returns a new expression channel andits name as
output. The PCXM header �le speci�es the TYPE, NAME, and func tion call
to be issued (CALL). In addition, the developer de�ned a HTML help page
(HELP URL) and speci�ed that both input gene lists should contain only a
single gene (INGENES). Di�erence patterns are useful to analyze, e.g., the
temporal variation of an expression pattern (Figure 3, right side) or compare
the pattern of di�erent genes. In our example, we consider a PointCloud atlas
�le containing late (76-100%) and early (0-3%) blastoderm hunchback (hb)
patterns. By applying the di�erence function to these genes, we can explore the
temporal expression pattern change. As this example illustrates, the Matlab
interface allows us to easily and quickly extend PCX with additional features.
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Fig. 3. M-�le (top left) and PCXM header �le (bottom left) of an examp le function
for the computation of the cell-by-cell di�erence between t wo expression patterns.
Color of text is used to illustrate which parts are mandatory (red), optional (blue), or
provided in a template �le (black). Right: Example showing t he use of the function
to compute the di�erence between late- and early-stage hunchback expression.

3.3 Applications

The combination of PCX and Matlab has a wide range of applications ranging
from plotting and cell selection to expression �ltering.

Often, one needs to quickly create a speci�c plot, e.g., for apresentation.
Matlab provides a rich set of plots that can be deployed quickly via PCX' inter-
face to Matlab. Plots created in Matlab are displayed in an external Matlab
plot window, supporting direct interaction with the plot. W e implemented,
e.g., a line-out plot in Matlab for comparison of the expression pro�les of
multiple genes along a line de�ned on the embryo surface (notshown).

A second application of PCX' Matlab interface is cell selection. This cat-
egory of applications includes, e.g., functions for importing/exporting cell se-
lections, segmenting gene expression patterns [13], clustering cells [20], and
detecting features.

Expression �ltering functions select expression patternsor create new de-
rived \expression" patterns. Simple �ltering functions in clude functions for
expression data import or export, arithmetic functions for computing the cell-
by-cell di�erence between expression patterns (c = a � b) or the cooperative
pattern of genes (e.g.,c = a � b). Other applications of expression �ltering
include smoothing and post-processing of expression patterns, masking of ex-
pression patterns, or dimensions reduction (e.g., using principal component
analysis). Advanced analysis functions, such as the gene expression model-
ing described in Section 4, often bridge various of the application categories
mentioned above.
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4 A Predictive Model of Expression Control

The BDTNP gene expression atlas provides us with information about the
spatio-temporal expression pattern of genes, i.e., the input and output of the
complex genetic networks responsible for the regulation ofgene expression
patterns. Based on this information one can attempt to infer potential regu-
latory interactions leading to the formation of a selected target pattern.

To explore and better understand gene pattern formation we �rst de�ne
a basic model for a genetic regulatory network. We use a linear model, i.e.,
the output of a model network is de�ned through a linear combination of its
weighted inputs (Section 4.1). Given the input, output, and basic network
model, we need to �nd a speci�c network model that de�nes the target well.
To �nd a good network model we use a genetic algorithm [29, 3],which we
implemented using Matlab (Section 4.2).

In the described network model, the output directly dependson the input.
Validation and understanding of the input patterns is, ther efore, crucial for
the interpretation of a predicted model. Furthermore, we need to be able
to compare the output of a network with the target pattern. PC X supports
validation and comparison of expression patterns via a combination of physical
and abstract visualizations and statistical analysis tools, making PCX ideal
for these tasks. Using the PCX-Matlab interface we integrated the Matlab
optimization function with PCX making the analysis easily accessible for the
target user (Section 4.3).

In Section 4.4 we describe the example application of our system to model
the expression pattern of the geneeve. It is beyond the scope of this paper
to provide a conclusive model for theeve regulation. The goal of the research
covered here is rather to investigate the advantages and disadvantages of the
employed direct network modeling approach.

4.1 Expression Model

Next, we describe a continuous, linear expression model. Based on the expres-
sion values of the measured expression patterns of a set of input regulators
eregs = f e1; e2; :::; ek g we de�ne the model expression of the cellc as:

v(w; eregs ; c) =
kX

i =0

wi ei (c); (1)

with w = f w1; w2; :::; wk g 2 [� 1; 1]k being the weights of the di�erent regu-
lators eregs . A weight of +1 indicates strong activation and a weight of � 1
indicates strong inhibition of expression. In practice, a gene can only show pos-
itive expression, i.e., further inhibition of a non-expressed gene has no e�ect
on the output. To account for this behavior, we de�ne the model expression
of a cell c as:
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m(w; eregs ; c) = max(v(w; eregs ; c); 0): (2)

The expression pattern de�ned by a network modelw is de�ned as:

m(w; eregs ) = f m(w; e;1); m(w; e;2); :::; m(w; e; n)g : (3)

A gene can also be ubiquitously expressed at some basic leveleven if no
spatially regulated activator is present. To account for this behavior, a user
can include a constant expressioneconst = 1 as input factor with the corre-
sponding weight weconst de�ning the degree of basal expression. By including
cooperative patterns | e.g., of the form eij = ei ej | as input regulators, a
user can also account for simple non-linear e�ects of cooperative regulation,
i.e., two genes acting in cooperation to form a pattern.

Expression modeling | using binary as well as continuous models | has
proven to be a powerful tool for the study of genetic regulatory networks [27, 4,
26]. The main limitation of linear expression models, such as the one described
here, is that they are not able to account for non-linear regulatory e�ects |
such as heterodimerization of two transcription factors for a speci�c regulatory
e�ect [22] | and may not be able to predict all targets correct ly.

4.2 Optimization Algorithm

The goal of the optimization is to �nd a model w for which m(w; e) �ts the
target expression pattern etarget well. To de�ne the similarity between two
expression patternsei and ej we use the correlation measure

corr (ei ; ej ) =
P n

c=0 (ei (c) � ei )(ej (c) � ej )
(n � 1)sei sej

(4)

as distance function, with sei and sej being the sample standard deviation
of ei and ej , respectively. The correlation is a scale-invariant measure | i.e.,
corr (etarget ; m(w; eregs )) = corr (etarget ; t � m(w; e)) 8 t > 0 | allowing us to
�nd models that capture the relative structure of the target pattern rather
than its absolute expression. The correlation measure further has the advan-
tage that it is easy to compute. The main disadvantage of the correlation
measure is that it describes only the global �tness of a possible solution but
does not consider the local structure of expression patterns in physical space.

The optimization problem we have to solve is:

max
w2 [� 1;1]k

(corr (etarget ; m(w; eregs )) : (5)

The goal of the optimization is to �nd a weight vector w so that the correlation
betweenetarget and m(w; eregs ) is maximal.

Finding the optimal weight vector w is an NP-hard problem. To �nd a
possibly near-optimal solution we use the following genetic algorithm:
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The algorithm is based on the canonical design of a genetic algorithm [29]
and �nds a single network w that de�nes the model expression pattern m
with correlation f to the target pattern etarget . Besides the target pattern
etarget and the input regulators eregs , the algorithm has the following ad-
ditional parameters: i) spop , size of the population of possible solutions, ii)
pcross , probability of crossing between two selected solutions and iii) pmutate ,
probability of mutating a particular entry wi of a solution vector by a small
random value. The parametersl iter and lcorr serve as termination conditions
de�ning the maximum number of iterations and the desired correlation score,
respectively. Optionally, we also allow the user to specify: i) whether the two
best solutions should always be preserved, ii) whether mutations should only
be accepted if they improve the solution, iii) whether the population should
be initialized randomly or with all zero values, and iv) which types of plots
should be shown during the optimization procedure.

Genetic regulatory networks are highly dynamic and often contain redun-
dancies, i.e., in practice various good solutions may exists to the same problem.
We repeat the optimization several times to investigate thediversity of good
solutions and to increase the probability of �nding a near-optimal solution.

4.3 PointCloudXplore and Matlab for Network Modeling

We implemented the described optimization algorithm in Matlab and inte-
grated the function with PCX via our Matlab interface. Figur e 4 illustrates
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the design of a network modeling experiment using PCX and Matlab. Using
the visualization and analysis capabilities of PCX, the user �rst identi�es the
target pattern of interest and a set of potential regulators, allowing the user
to e�ectively validate the input expression patterns. A gene is often expressed
in multiple distinct spatial domains | e.g., in seven stripe s in the case ofeve
| which may be regulated by di�erent cis-regulatory elements(CREs). Using
PCX a user can select the di�erent expression domains of a gene. These cell
selections can then be used to mask the expression pattern ofthe target to
simulate the corresponding CRE pattern. Alternatively, one could use the cell
masks directly in the optimization to compute the �tness of t he model only in
the area of interest to �nd a local model. Finally, the user is asked to specify
the input parameters of the optimization algorithm, i.e., spop , pcross , pmutate ,
l iter or lcorr , in the Input Dialog created automatically by PCX.

After the user has con�rmed the input, PCX automatically sta rts Matlab,
transfers the input data to Matlab, and initiates the execut ion of the opti-
mization function. During the optimization process the user is presented a set
of plots visualizing the progress of the analysis. After completion of the opti-
mization process, PCX imports the model expression pattern(s) m(w; eregs ),
the relevant data is saved in a user-de�ned.mat Matlab state �le, and a set
of plots are shown to provide an overview of the results produced.

As this example illustrates, the close integration of PCX and Matlab al-
lows advanced analysis functions to be deployed quickly to the biology user
community while improving usability and accuracy of the analysis.

4.4 Modeling the eve Expression Pattern

In the following we describe the application of these methods to the modeling
of the expression pattern of the geneeven skipped (eve). The eve pattern
is characterized by seven stripes, which are usually presumed to result from
the action of �ve CREs. While some stripes appear to have their own CRE,
other stripes may share a module, and stripe 7 (the posteriormost stripe) has
been speculated to be under redundant regulation. We here focus on modeling
stripe 2 and 7 of theevepattern. The goal of this experiment is to demonstrate
the strengths and weaknesses of expression-based network modeling.

Figure 4 illustrates the basic setup of the experiment. In order to identify
how the pattern of eve is initially formed we use the eve pattern at stage
5:9-25% as target, while applying selective masks to isolate individual stripes
of the pattern. For the potential regulators (see Figure 4) we used protein
patterns at stage 5:4-8% because of the transcriptional delay between the reg-
ulator input and the output patterns. In cases where only mRNA expression
data was available, we selected the patterns from stage 5:0-3% because of the
translational delay from mRNA into a protein.

Figure 5 summarizes the results for the modeling ofevestripe 2. The algo-
rithm consistently found similarly high-scoring models with corr > 97%. The
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Fig. 4. Overview of the design of a network modeling experiment. Using PCX the
user speci�es the necessary input of the optimization funct ion, e.g.: (i) the set of
input regulators eregs (green box), (ii) the target etarget (red box), (iii) an optional
mask specifying the area of interest (blue box), and (iv) add itional input parame-
ters, such aspcross . After the user has con�rmed all settings, PCX sends all data to
Matlab, calls the optimization function, and afterwards im ports the model expres-
sion pattern m(w; eregs ). The optimization function also creates a set of plots with
an overview of the analysis results.

expression pattern of the predicted model �ts the target well and even resem-
bles the D/V variation of the target pattern. Commonly, the i nput regulators
used are only considered as regulators along the A/P body-axis. The shown
results suggest that the input regulators are also able to function as regulators
along the D/V body-axis (Figure 5d). These results are consistent with earlier
modeling results based on data clustering [20]. The modeling suggests thatD,
hb, and possibly prd function as main activators of eve stripe 2 while slp1,
Kr and gt function as inhibitors. The absolute weights of the remaining input
regulators (i.e., kni, bcd, hkb, tll , and cad) are much lower, indicating that
the function of these factors is not well characterized by the analysis.

Experimental data on eve-stripe regulation has shown that eve stripe 2 is
activated by bcd [25] and hb [25] and potentially by D [21], and inhibited by
gt [25], Kr [25] and weakly by slp1/2 [1]. prd is known to be able to activate
late eve stripe expression via late enhancers [8], but is not essential for eve
stripe 2 early upregulation. Notably, the modeling is able to �nd similarly
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Fig. 5. Overview of the modeling results for eve stripe 2. We repeated the genetic
algorithm 20 times while �gures b-d show the model with the hi ghest correlation.
All experiments achieved a correlation of > 97:x%. a) Plot of the 20 models with
each curve representing one model. The genes are ranked according to their absolute
average weight. b) Scatter plot of the target pattern and the best model pattern.
c,d) Unrolled view of the target and the model pattern, respe ctively. Color shows
relative expression with blue=low and red=high expression . We can see that the
model �ts the target well and even resembles the D/V variatio n of the target stripe.

high-scoring models even when removingprd from the input, indicating that
prd may not be essential for de�ning eve stripe 2 (not shown). The reason
why bcd was predicted as a weak inhibitor instead of an activator may be
because (i) the highest bcd levels appear in a relatively wide gradient in the
anterior of the embryo whereeve stripe 2 is not located, and/or because (ii)
bcd activates also inhibitors of eve stripe 2, such as slp [10] and gt [17].

We also modeledeve stripe 7 using the same set of input regulators (Fig-
ure 6a-c). The models we computed for stripe 7 score in general lower than
the stripe 2 models (corr � 88%) most likely due to a strong bias resulting
in lower \expression" on one side of the embryo. The input regulator cad |
which functions as a main activator in the stripe 7 model | sho ws a similar
bias due to measurement or data normalization errors, explaining the observed
behavior. The boundaries ofevestripe 7 are, however, well-de�ned in the gen-
erated model. The model suggestsD, cad, andprd as main activators and gt,
Kr, kni, hkb, and tll as main inhibitors of eve stripe 7.

It is commonly presumed that eve stripe 7 arises from the action ofeve
stripe 3+7 CRE. With the standard eve3+7 CRE, inhibition by kni has been
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Fig. 6. Overview of the modeling results for eve stripes 7 (a-c) and 2+7 (d-f). We
repeated the genetic algorithm 20 times while �gure c and f sh ow the result for
the best model for stripe 7 and 2+7, respectively. All runs ac hieved a correlation
of 87:x% for stripe 7 alone and > 88:9% for stripe 2+7. a,d) Curve plot of the 20
models. b,c,e,f) Unrolled view of the target patterns and th e respective best model
pattern. Color shows relative expression with blue=low and red=high expression.

experimentally veri�ed, but mutation in tll actually aboli shed stripe 7 [24],
and the demonstrated clear negativehb regulation was not found. Moreover,
mutations in gt, Kr, and hkb have been reported not to a�ect th e output
of the 3+7 stripe element [24], though gt and Kr have been herepredicted
to be strong inhibitors. Likewise, experimental data does not support D as
an activator of stripe 7 [21], and prd is not essential for early eve-stripes 7
upregulation [8]. However, Yan et al. [30] predictedevestripe 7 to be activated
by Stat92E, which was not available in the input dataset. The di�erences
between eve stripe 3+7 CRE and other experimental data and our results
suggest that modeling may be able to closely mimic the targetpattern via a
di�erent network, even when important regulators are missing in the input.

While eve stripe 7 has usually been described as part of an output of the
eve stripes 3+7 CRE, Janssens et al. [15] have proposed thateve stripe 2
CRE might also participate in regulation of eve stripe 7. The eve stripe 2
element is known to often produce a weakeve stripe 7 expression and the
same is observed in sepsideve stripe 2 enhancers [23, 15, 11], while the stripe
7 produced by eve 3+7 CRE can be weaker than stripe 3 [24]. Therefore, we
modeledeve stripe 2 and 7 at the same time (Figure 6d-f). Qualitatively the
model for evestripe 7 does not change signi�cantly whileevestripe 2 shows the
same D/V bias as stripe 7, probably due to the higher-weighted cad pattern.
The boundaries ofeve stripe 2 are, however, still well-de�ned. The Janssens
et al. [15] model supports our prediction of cad as an activator and gt and tll
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Fig. 7. Overview of modeling results for eve stripes 1, 3, 4, 5, and 6.

as repressors ofeve stripe 7(+2) (Figure 6a,d). These results suggest thateve
stripes 2 and 7 could, indeed, be formed by a common network model and may
be co-regulated. However, our model does not account for potential regulation
by multiple or di�use CREs, which may cause distortion due to too high a
contribution of stripe 7 to a particular CRE model. To elimin ate potential
problems due to interference between CREs one would ideallymeasure the
actual output of individual CREs, e.g., from transgenic constructs.

Figure 7 shows preliminary results for the modeling ofevestripes 1, 3, 4, 5,
and 6. For evestripe 1 and 5 we found high-scoring models (corr > 93%) which
| similar to the eve stripe 2 model | also reproduce the main variations in
expression along the D/V axis. While the models foreve stripes 3 and 4 show
expression in the expected location, the stripe-borders are not well-de�ned.
Interestingly the algorithm is able to model stripe 3 well when including the
cooperative factor ehbP;KrP = ehbP eKrP as input regulator, achieving much
higher scores ofcorr � 90%. While cooperative regulation of stripe 3 by
Kr and hb may not be real [24], this behavior nevertheless indicates that |
besides the fact that important input regulators may be missing | non-linear
regulatory e�ects not captured by the used linear model may be responsible
for the correct formation of at least eve stripe 3.

The fact that the modeling was able to predict a large range ofregulators
correctly for eve stripe 2 shows that modeling can provide interesting insights
into, or at least hints of, possible regulatory interactions. Missing regulators
(see stripe 7), noise (see stripes 7 and 2+7), and limitations of the employed
computational model (see stripe 3), however, directly a�ect the quality of the
predicted model and may also lead to false negatives (missing regulators) and
false positives (misidenti�ed regulators) in predictions (see stripe 7). Modeling
results should, therefore, always be validated experimentally.
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5 Conclusions

To fully exploit the collaborative research potential of teams of biologists,
computational biologists, and computer scientists, it is essential to overcome
true and perceived obstacles for collaboration. Biologists rarely do compu-
tation and computer scientists rarely do biology. To maximize the impact
of novel, complex, high-dimensional data sets acquired viamodern imaging
or computational methods | such as the BDTNP 3D gene expression atlas
data | the data needs to be accessible to biologists and comprehensible to
developers of analysis and visualization software.

We addressed these challenges by linking the visualizationsystem Point-
CloudXplore (PCX) and Matlab via a dedicated interface, providing biologists
seamless access to advanced data analysis functions and enabling bioinformat-
ics researchers to integrate their analysis directly into the visualization. By
being able to test new analysis functions during development, biologists are
able to provide feedback early, facilitating communication between the devel-
oper and the user. By utilizing PCX and Matlab, a developer can develop
new functions more e�ciently without having to know anythin g about the
PointCloud data format or the architecture of PCX.

One potential focus for future research are methods for linking other types
of data, such asin vitro and in vivo binding data, with the gene expression
data analysis. Being able to incorporate di�erent types of data is essential,
e.g., for the development of advanced predictive models of gene expression.
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